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Present paper considers systems of nonlinear equations in the case wnen they are a min- 
imum condition for a functional, given in an n-dimensional Euclidean space Ea. A special 
method of descent is used to solve the system. This method entails a consecutive inclu- 
sion of unknowns, and the problem is solved, when the last unknown has been included. It 
is shown, that in the case of a linear system, the method of descent leads to a compatational 
scheme of the method of bounding. 

Investigation of a large number of physical problems, specially in mechanics and auto- 
mation, leads to the necessity of solving systems of equations representing an extreme1 
condition for some functional f(x). These we shall call the systems of the potential type 
and we shall present a method of solution of such systems in the case when fix) is given in 
some region C of the n-dimensional Euclidean space E,. 

1. Suppose that a system of nonlinear equations 

fi (~) =O (i - l,...,n) x = (51. 22,...,5,) E_G (1.1) 
is given. We shall assume that the system (1.1) represents the condition for a minimum of 
the functional f(z) which is bounded below and has a unique stationary point x*. Obviously 

fi(x) = af(s)l (1.2) 
In determining the point x*, condition of potentiality of the operator f, = ({t,...,f, ) makes 

it possible to consider, irrespective of the method adopted in our investigation, the func- 
tional f(x) instead of the system (1.1). This important property is widely utilised ([l to 41 
e.a.) in qualitative investigation of operators of this particular type defined on the arbitrar- 
ily general Banach spaces as well as in establishing effective methods of their solution, 

Let xc(o) E G be a given initial point. Under our conditions f( x(o) ) >, f( x+ ) where equal- 
ity occurs only if x(O) = n*. We assume that the plan (strategy) of descent from f(x(o)) 
which we are about to devise must be such, that f(x *) is reached quickly and with certain- 
ty. Similar methods ([4 and 51 e.a.) usually realise the descent along a straight line of a 
deepest slope issuing from f( x(o)). L ength of the path of descent in this direction is usual- 
ly determined using various criteria, and these often lead to processes which converge 
fairly slowly, particularly during the approach of f(x *). 
Bere we have adopted another plan of descent which, in the case of two variables, we shall 
agree to call the descent along the “valleys (ravines)“. These ravines are, however, dif- 
ferent from those introduced by I.M. Gel’fand. Such a descent will, under our assumptions 
concerning the functional f(x), always terminate at the required point of f(x l ). 

Let us realise, in the first stage, a descent from f(x (0)) in the direction xl to the low- 
est point of f(z(l)) where x,(t) = x,(o) w h 
Eq. 

en i 32. Obviously, x1(*) will be a solution of 

f, (q: Q”), . . ., tr/‘) = (1 (1.3) 

&ich we, at present, consider as an equation in one variable x1. 
W.* shall assume that point x(1) is situated at the bottom of a ravine. In order to effect 
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a further descent along it, we must have another point x(t)‘. This point can also beobtain- 
ed from (1.3) by adding to another coordinate, say z2, an increment 2x2. To do this, we 
must solve Eq. 

,i, (.vr; I? (01 /. AX& I’:, 10’ , . _( .‘. 1,‘“‘) 0 (1.4) 

Its root will be %t(t)‘= x,(t)+ A%%. Dire&on t of the further descent is given in terms 
of the parameter t, by Formulas 

.ri (1) : $1) + 2 t (i I I, 2). S#) =x.(l) = T.(O) * t (i = 1, 2) (1.5) 
r ~_ .__- 

(As -= j’ (AXE)? : (A,,$) 
We can also put As = 1. 
Descent along t continues until the lowest point of f(%(t*)) is reached. It is easily 

seen that I+ is a solution of 

fi f% (0) A%t + fz (5 (t)) Ax% = 0 (1.6) 

Left-hand part of this Eq. gives the increment of the functional along t, and the descent 
from r(o) to z (r*) = %(t*tf shall be called the first subcycle. 

Taking now %(l, 11 as r(o) we complete the second subcycle in an analogous manner and 

repeat this process until %(t,m) and ~(10 m+t) are sufficiently close to each other. We shall 

denote the limit point by n(2). Its existence follows from the previous assumptions concer- 
ning the functional. 

We shall now show that the attained point ~(2) is a solution of a set of two Eqs. 

fr (X.1, ra; 53(o), . , .( .c,*‘O)) = 0 jiL (Q, sg; zp, . . ., .n’o’) = 0 (1.7) 

Indeed, in order to be a solution of (I.?), ~(2) must satisfy the condition Af = 0, i.e. COW 
dition (1.6) when AZ 1 and Ax are arbitrary and sufficiently small. This is the condition 
fulfilled by the process descri *r: ed above. 

Since Ax, is a suitably chosen, sufficiently small magnitude, we can write (1.4) as 

provided that fl(r) admits partial derivatives in %t and x - 
Coefficients (1.9) can also be determined by numerica 1 differentiation and the latter 

method is particularly suitable when a computer is accessible. 
Solution of equations of the type (1.6) shall be discussed below. 

Let us now continue our process in the following manner. We shall add to the point r(2) 

a small increment hr3 and solve the system (1.7) once more 

jt (z,, ~‘2; .,jiO! Ar:$, .,.r”“, , xn’(“) = o 

I:! ( “1, _v:; .c:,“J’ A:r3, :J& 

This yields x t(*) ’ and %2(2) ‘which can be ussd to ob:a;n A% 

(0)) = () (1.10) 

I: r2(2)‘- x2 

t”% (2)‘- 

c2). The obtained magnitudes together with the assumed b 

x1(21 and A.rz= 
z3 will define new 

direction of descent t, which will have the following variable coordinates 

Value of the parameter c at which the functional f( ) x reaches its minimum on t, is given 

by the root of Eq. 

ft (I (1)) A.r, -:m I;! (z (I)) Is, -- f:$ (z (1)) Aq = 0 (1.12) 

where z(t) is given by (X.11). As before, this is the first subcycle which is repeated until 
a point %:(3) is reached with a necessary accuracy. When some smalf valueis assumed for 

A%,, we can use it to calculate Ax, and 9x2 from a linear system 

attAr, t- u,z.ls, --“i331, 

cc,*Axt ;- “AMASS -aa,,Ax3 (1.13) 

where 
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(1.14) 

fJ/. ( r) ai, ( 1.) 
flik = flk. - ax,, 

~--- 
8Xi .x1.,(2) 

Ke assume here that functions f are differentiable. 
Then, point ~(3) is a solution o a set of three Eqs. I 

fl (.K1, X2, 23; g(O), . . .( zn’O’) = 0 

fz(a, 12, r3; x4 
(0) 

, . ., ST1 (0’) = 0 (1.15) 

fs(1.1, a, x3; x4 
(0) 

, . . ., J-n 
(‘9) = 0 

We shall call each inclusion of a new unknown, a cycle. Repeating the above P~OC~~B 

we reach the k-th cycle in which we solve the following nonlinear Eq. : 

fl (5 (t))b + fz (5 (t))b + . ..+ fk (2 (d) Azk = 0 (1.16) 

where .bz, is given as before, while x(t) is defined in this subcycle by the Formula8 

Ax. 
z.(t)=&*-1+-l)+ -$t 

t z (i=1,2 ,...I k) (1.17) 

xi(t) = zi(k-l* s-1) = xi(o) 0 > 4, As = ( $ (Az~)‘)“’ 

j=1 

Here AZ, = CX~(~- 1n ‘) - r,(k - 1, a - 1) (i < k ) where r,(k - 1, l ) are solutions of 

fl (rl, la, . . ., “b_l; Q(‘) + AZ,, zk+(;‘, . . ., z,,,‘~‘) = 0 

(1.18) . . . . . . . . . . * . . . . . . . . . . . . . . 

fk_l (xl, x2, . . ., “k-1; xkto) + AZ,, z& . . ., z,,,(O)) = 0 

As before, Ar can be found from a linear system 
anAx + anAn + . . . + al, k_lAzk_l = - alkAq. 
a...................... (1.19) 

++l,lA”l +“r_l,aA”z +. . . fa,,,h.-.&+~ =-=k-~,r~=l, 
_ af.(x) af I (4 

. aij = a.. =:‘( E- 
it axj axi I -(k-l. s-1) (1.20) 

If the computation is sufficiently accurate, then the n-th cycle gives the reqnired soln- 
tion. If, on the other hand, a computational error is committed so that z(o) does not satisfy 
(1.1) with sufficient degree of accuracy, or if perturbation of the functional /(x) has occur- 
red, we take z(n) as ~(0) and repeat the whole process. 

We can now see that the plan adopted by us, resulted in a method which we shall call 
the method of consecutive inclusion of unknowns. 

It should be noted that our plan can also be realised in the case when the fnnctional flz) 
is known, but not the system (1.1). 

2. The proposed method requires multiple solution of nonlinear equations in one variable, 
of the form 

Y (t) = fl (r (t)) Azl+ fa (r (t)) AQ + . . . + fk (X (t)) AXk = 0 

xi(t) = x; + ait (i = 1, 2,. . ., k) (2.1) 
We shall now make an assumption, common in mechanics [2 and ‘33 that the functional 

f(x) is convex in G and satisfies the condition dzf(%) > y2 @x)2. We shell show that under, 
this condition y (t) is always a monotonously increasing function. This will allow us to em- 
ploy convenient methods of solution, always resulting in an exact solution of (2.1). 

Let us write the differential of (2.1) 

k k 

dy = 
L 
2 x ft; (z (t)) AxiAxj 

I 
& dt (2.2) 

i=l j=l 

Conditions of convexity imply that the expression within the middle bracket will be a 
positive definite quadratic form for any z E G. This gives us dy > y2 dt which was to be 
proved. Existence of a unique solution follows from the existence of ~2 > 0. 

We shall use a method of secants [6] combined with the method of regula falsi to solve 
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(2.1). We choose an initial approximation t , say to 
increase the variable t by an increment At% 0 and 

= 0 and calculate yc = y (to). Next we 
thus obtain tr = tc + AC. Having found 

yI = y (tt), we obtain the remaining approximations by means of a recurrence formula 

t. I? = t. - *,. 
iri - ri-1 

-t+1 -t at Yi - Y&l 
When. the function y (t) has no point of inflection, then the above process is convergent and 
we easily see that all yt are of the same sign. If this condition is not satisfied, then the 
process may diverge and in order to make it always converge, we must adopt the following 
procedure. Suppose that the sign of yR + t differs from that of yk+ Thm, denoting the exact 
solution by t*E(t , c + ) we continue our computation using the method of regula f&i. 
We write the FormAa t2.d in the form 

t.---t 
(2.4) 

ff changes of sign occur again, we replace ok and yk each time with those values, which 
immediately precede the change of sign. 

When passing from t, to t,~~, we must make certain that the condition z (t)EG is fulfil- 
led. If it is not, then we must replace t,+t with t,+l ‘such&hat tt < c,+~ ‘< tf+*, x (:,+I 3 

EG. 

3. TO illustrate the method we shall consider the case of a quadratic functional, when 
(1.1) is linear. In this case equations of the type (1.16) are also linear and can be solved 
by elementary methods. Subcycles are no longer necessary and this means that the bottom 
of the ravine runs along a straight line. Writing (1.1) as 

allxl+ al!@% + . * . + “#u + b, = 0 

. . . . . . . . . . . . . . . . . . (3.1) 

crux1 + $&ax, + * . . + a*$$-& + b, = 0 
and assuming that x(a) = 0 we obtain, from the first equation, 

x1(1) = p&Jr (Pn(‘) = - l/an) 
Further, by the linearity of our problem and putting Ax, = 1, we obtain from (1.8), 

Axr@) = R~l%zra 

Taking fl.8) into account we obtain, from (1.6) and (1.5) 

,,@) = Rn@)br + Rzafsf&, ,I(%) = x.lft)+ AxI (%F,fo) 

(&2@’ = - 1 / (alrAzr(*) + am), Rnf2) T AQ@)~&@)) 

Reaultiug x,(2) and x,(z) represent exact solutions of tbe system 
1 

a,=;+ auxa + b, = 0, aalxl + alasa -I- b = 0 
Let us now assume that we have obtained a solution of the .xck’ I)-th subsystem 

a1121 + cM% + . . . + 01, h.-lxk_l + b, = 0 
. . . . . . . . . . ..*....... 
akwl, lx1 + ak-l, a’t”a + - - . =k,l, k_lxk_l + b, = o 

Next, putting Ax,(k) = I, we obtain from (1.20) Ax,(*) 

(3.2) 

(3.31 . . . . . . . . . . . * ‘ . . . . . . . . . . . . 

ak_1, 1AxI + ak_l, aAxs + . . . + ak_l, k_lAXk_l f ak-l, k = o 

We should note that both s sterna, (3.2) and (3.3) have an identical inverse matrix Ajl_ t. 
From (1.17) and (3.3) we easr y obtain *T 

xE,‘~’ = i @kj(k)bi, 
A%.(“” 

pkik) - _ i , 
elk 

ah. = ap Axi (3.4) 

j=l j-1 

Clearly Stk) are elements of the matrix A’ 
eliminating t r As 

kt. Remaining &,)k) are obtained from (1.17) by 
h‘ 

r.lk) = LC.(~-~) + A~i(k)~k~~) = 2 Pij@)bj, t * pijfk) ;= ~~~(~-1) + Ax~(k)~~~) 
j=l 
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(i, j = 1, 2, . . a, k - 1) 
Ax*(k+t) are computed by means of the fame inverse matrix Rjl 

(3.5) 

Ax~(~+‘) = i Pij(k)aj, k+l (i=1, 2 , . . ., k), Axh.+(:+l) z-: 1 (3.6) 

j=l 

Putting now k = n, we obtain the required solution x * of (3.1). 
This process of computation corresponds, as expected, to a wellkn~wn method of boun- 

ding f7]. However, it was obtained in an entirely different manner, therefore the interme- 
diate magnitudes have different meaning. 

4. Various simplifying variants to the proposed method are possible. They include vari- 
ous processes of consecutive approximation in which the number of cycles increases to- 
gether with the required accuracy. We shall consider two such variants. 

We shall adopt the following plan of descent. First we 
x2 as in the Section 1. Then, taking the attained point xc2 P 

erform the descent along x1 .and 
as initial, we perform a similar 

descent along x2 and x . Further, selecting various pairs of coordinates one after the 
other ao as to in&de a 1 coordinates in this process, we continue the descent until all the 1 
pairs give infinitesimal corrections. Coordinate pairs should be chosen so as to ensure the 
strongest possible interdependence between the coordinates within each pair. Convergence 
of this process follows directly from the Theorem 2 of [2 and 31, or it can be proved using 
the method similar to that employed in Section 1. Computational scheme of this process is 
as follows. 

Let us assume that descending along xi and r, we have reached a point #‘)* 
We select another pair containing one of the previously used coordinates, e.g. x,, %k’ 

Then, choosing Axk in the manner used in Section 1, we obtain an expression analogous 
to (1.8) 

Art - - 
fik (s”‘f 

I.. (z’“‘) ‘%k 
1% 

and solve Eq. 

fi != (Qf AZ, + fk (a(t)) Az6- = 0 
where 

xt (t) = zt(“)+Axtt, “k(t)=“k ,_ (“)+ Ax& xj(t) =zj@') (i#i, k) 

I’& yields the point z( y+t). Selecting a new pair of coordinates we repeat the proce- 
dure e.t.c. This method obviates the necessity of solving repeatedly an increasing system 
of linear equations of the type (1.191, but may impair the rate of convergence. 

We assume now that the unknowns can be split into several groups in such a manner, 
that each group contains those unknowns, which are most strongly interdependent. Then we 
arrange Eqs. of (1.1) into subsystems according to the same plan. Using the method of Sec- 
tion 1 we now solve, consecutively, each subsystem, using the final point of the subsystem 
just solved, as sn initial point for the next subsystem. 

The process terminates, when improvement in accuracy becomes vanishingly small. 
Its convergence can be proved in a manner similar to the previous case, 
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